## metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# catena-Poly[[trimethyltin(IV)]- $\mu$ -[(*E*)-2-methyl-3-(3-methylphenyl)acrylato- $\kappa^2 O:O'$ ]]

### Niaz Muhammad,<sup>a</sup> M. Nawaz Tahir,<sup>b</sup>\* Saqib Ali<sup>a</sup> and Ziaur-Rehman<sup>a</sup>

<sup>a</sup>Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and <sup>b</sup>University of Sargodha, Department of Physics, Sagrodha, Pakistan Correspondence e-mail: dmntahir\_uos@yahoo.com

Received 26 June 2008; accepted 27 June 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.024; wR factor = 0.069; data-to-parameter ratio = 23.1.

The title trimethyltin(IV) carboxylate,  $[Sn(CH_3)_3(C_{11}H_{11}-O_2)]_n$ , is a carboxylate-bridged polymer in which the Sn atom exists in a *trans*-C<sub>3</sub>SnO<sub>2</sub> trigonal bipyramidal coordination. One Sn-O bond is a covalent bond [2.114 (2) Å], whereas the other is a dative bond [2.607 (2) Å]. The polymeric chain propagates along the *b* axis of the monoclinic unit cell.

#### **Related literature**

For related crystal structures, see: Muhammad *et al.* (2008*a*,*b*); Niaz *et al.* (2008); Tahir *et al.* (1997*a*,*b*).



#### Experimental

Crystal data  $[Sn(CH_3)_3(C_{11}H_{11}O_2)]$   $M_r = 339.01$ Monoclinic, C2/c a = 12.9530 (6) Å

b = 9.8756 (4) Å c = 24.0728 (10) Å  $\beta = 101.301 (2)^{\circ}$  $V = 3019.7 (2) \text{ Å}^{3}$  Z = 8Mo  $K\alpha$  radiation  $\mu = 1.68 \text{ mm}^{-1}$ 

#### Data collection

```
Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
T_{min} = 0.705, T_{max} = 0.781
```

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$  $wR(F^2) = 0.068$ S = 1.013348 reflections

#### Table 1

Selected geometric parameters (Å, °).

| Sn1-O1          | 2.1144 (19) | Sn1-C14             | 2.1037 (18) |
|-----------------|-------------|---------------------|-------------|
| Sn1-C12         | 2.1126 (17) | Sn1-O2 <sup>i</sup> | 2.607 (2)   |
| Sn1-C13         | 2.1072 (17) |                     |             |
| O1-Sn1-C12      | 90.17 (7)   | C12-Sn1-C13         | 114.87 (7)  |
| O1-Sn1-C13      | 97.09 (7)   | C12-Sn1-C14         | 116.04 (7)  |
| O1-Sn1-C14      | 98.56 (7)   | C13-Sn1-C14         | 126.36 (7)  |
| $O1-Sn1-O2^{i}$ | 175.64 (7)  |                     |             |
|                 |             |                     |             |

T = 296 (2) K

 $R_{\rm int} = 0.023$ 

145 parameters

 $\Delta \rho_{\text{max}} = 0.63 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -0.41 \text{ e } \text{\AA}^{-3}$ 

 $0.25 \times 0.18 \times 0.15 \text{ mm}$ 

14486 measured reflections

3348 independent reflections

2874 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

Symmetry code: (i)  $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$ .

Data collection: *APEX2* (Bruker, 2007); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2003).

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore, and for financial support to NM for PhD studies under the Indigenous Scholarship Scheme.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2468).

#### References

Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Muhammad, N., Tahir, M. N., Ali, S. & Zia-ur-Rehman (2008a). Acta Cryst. E64, m946–m947.
- Muhammad, N., Tahir, M. N., Ali, S. & Zia-ur-Rehman (2008b). Acta Cryst. E64, 01373.
- Niaz, M., Tahir, M. N., Zia-ur-Rehman, Ali, S. & Khan, I. U. (2008). Acta Cryst. E64, 0733.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tahir, M. N., Ülkü, D., Ali, S., Masood, T., Danish, M. & Mazhar, M. (1997b). Acta Cryst. C53, 1574–1576.
- Tahir, M. N., Ülkü, D., Danish, M., Ali, S., Badshah, A. & Mazhar, M. (1997a). Acta Cryst. C53, 183–185.

supplementary materials

Acta Cryst. (2008). E64, m978 [doi:10.1107/S1600536808019533]

## *catena*-Poly[[trimethyltin(IV)]- $\mu$ -[(*E*)-2-methyl-3-(3-methylphenyl)acrylato- $\kappa^2 O:O'$ ]]

### N. Muhammad, M. N. Tahir, S. Ali and Zia-ur-Rehman

#### Comment

Organotin compounds have attracted much interest owing to their potential use in industry and agriculture. In the Pharmaceutical industry, a number of dialkyltin carboxylate derivatives are being used as efficient antitumor and anticancer agents. In continuation of synthesizing new ligands having carboxylate groups (Muhammad *et al.*, 2008*a*, Niaz *et al.*, 2008) and their complexation with organotin(IV) (Muhammad *et al.*, 2008*b*), we report the crystal structure of title compound (I).

The title compound (I) (Fig 1.) is the trimethyltin(IV) complex of 3-(3-Methylphenyl)-2-methylacrylate (Muhammad et al., 2008a). The crystal structures of (II) {2-[(2,3-Dimethylphenyl)amino]benzoato-O:O'}trimethyltin(IV) (Tahir et al., 1997a) and (III) (Ketoprofenato)trimethyltin(IV) (Tahir et al., 1997b) have been reported. As the present complex have similar geometry around Sn-atom, so the bond lengths and bond angles are being compared with (II) and (III). The range of Sn—C [2.1037 (18)- 2.1126 (17) Å] bonds in (I) is reported as [2.106 (3)–2.113 (4) Å] in (II) and 2.106 (6)–2.116 (5) Å, in (III). The range of C—Sn—C  $[114.87 (7)-126.36 (7)^{\circ}]$  bond angles in (I) is reported as  $[113.9 (2)^{\circ}-125.2 (1)^{\circ}]$  in (II) and 117.0 (2)°-124.7 (3)°, in (III). Therefore, the C—Sn—C bond angles of trimethyltin moiety is mainly affected due to the change of coordinating ligand. The bond distances for Sn1-O1 [2.1144 (19) Å] and Sn1-O2<sup>1</sup> [2.607 (2) Å] (symmetry code i = -x + 1/2, y - 1/2, -z + 1/2) have different values compared to (II) and (III). These values in (II) and (III) are [2.153 (2)] Å and 2.495 (2) Å] and [2.184 (3) Å and 2.433 (4) Å], respectively. The O1-Sn1-O2<sup>i</sup> bond angle is 175.64 (7)°, which is larger but not very different from (II) and (III). The dihedral angle between the plane of benzene ring A (C5-C10) and the plane formed by C11/C12/C13 is 76.16 (7)°, whereas it is 7.0 (7)° between O1/C1/O2 and C2/C3/C4. There is a single C-H···O interamolecular H-bond (Table 2, Fig 1.) forming a five-membered ring (O1/C1/C2/C4/H4···O1). There exist  $\pi$ - $\pi$ -interactions between the centroids of benzene ring [CgA···CgA<sup>iii</sup>: symmetry code iii = 1 - x, -y, -z] and [CgA···CgA<sup>iv</sup>: symmetry code iv = 1 - x, 1 - y, -z]. The perpendicular distance between the centroids for CgA···CgA<sup>iii</sup> and CgA···CgA<sup>iv</sup> is 3.488 Å and 3.725 Å, respectively. The compound is polymeric in nature due to the bridging nature of carboxyl group.

#### Experimental

The title compound (I), was prepared by the reaction of stoichiometric amounts of the sodium 3-(3-methylphenyl)-2-methylacrylate (0.399 g, 2.02 mmol) and (0.402 g, 2.02 mmol)of trimethyltin(IV)chloride in dry toluene (100 ml). The reaction mixture was refluxed for 8 h and then allowed to stand overnight. The residual sodium salt was removed by filtration and the solvent was evaporated under reduced pressure leaving a solid residue. This was recrystallized from a mixture of chloroform/n-hexane (4:1). The yield was 80%.

#### Refinement

H atoms were positioned geometrically, with C-H= 0.93, and 0.96 Å for aromatic and methyl H, and constrained to ride on their parent atoms, with  $U_{iso}(H) = xU_{eq}(C)$ , where x = 1.5 for methyl H, and x = 1.2 for other H atoms.

**Figures** 





Fig. 1. *ORTEP* drawing of the title compound,  $(C_{11}H_{11}O_2)Sn(CH_3)_3$  with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The interamolecular H-bond is shown by dotted lines.

Fig. 2. The figure showing the polymeric compound.

## *catena*-Poly[[trimethyltin(IV)]- $\mu$ -[(*E*)-2-methyl-3-\ (3-methylphenyl)acrylato- $\kappa^2 O:O'$ ]]

| Crystal data                    |                                              |
|---------------------------------|----------------------------------------------|
| $[Sn(CH_3)_3(C_{11}H_{11}O_2)]$ | $F_{000} = 1360$                             |
| $M_r = 339.01$                  | $D_{\rm x} = 1.491 {\rm ~Mg~m^{-3}}$         |
| Monoclinic, C2/c                | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -C 2yc             | Cell parameters from 3348 reflections        |
| a = 12.9530 (6) Å               | $\theta = 2.6 - 27.1^{\circ}$                |
| b = 9.8756 (4)  Å               | $\mu = 1.68 \text{ mm}^{-1}$                 |
| c = 24.0728 (10)  Å             | T = 296 (2)  K                               |
| $\beta = 101.301 \ (2)^{\circ}$ | Prismatic, colourless                        |
| $V = 3019.7 (2) \text{ Å}^3$    | $0.25\times0.18\times0.15~mm$                |
| Z = 8                           |                                              |

#### Data collection

| Bruker Kappa APEXII CCD diffractometer                      | 3348 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 2874 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.023$                  |
| Detector resolution: 7.5 pixels mm <sup>-1</sup>            | $\theta_{\rm max} = 27.2^{\circ}$      |
| T = 296(2)  K                                               | $\theta_{\min} = 2.6^{\circ}$          |
| ω sans scans                                                | $h = -16 \rightarrow 15$               |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2005) | $k = -7 \rightarrow 12$                |
| $T_{\min} = 0.705, T_{\max} = 0.781$                        | $l = -30 \rightarrow 30$               |
| 14486 measured reflections                                  |                                        |

### Refinement

Refinement on  $F^2$ 

Secondary atom site location: difference Fourier map

| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                            |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.024$                                | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.068$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0374P)^2 + 3.5913P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.01                                                | $(\Delta/\sigma)_{\text{max}} = 0.001$                                              |
| 3348 reflections                                               | $\Delta \rho_{max} = 0.63 \text{ e } \text{\AA}^{-3}$                               |
| 145 parameters                                                 | $\Delta \rho_{\text{min}} = -0.41 \text{ e } \text{\AA}^{-3}$                       |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                         |

#### Special details

**Geometry**. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У             | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|---------------|---------------|---------------------------|
| Sn1 | 0.28429(1)   | -0.16993 (2)  | 0.22816(1)    | 0.0380(1)                 |
| 01  | 0.32929 (16) | -0.03474 (18) | 0.16907 (8)   | 0.0498 (6)                |
| O2  | 0.26730 (17) | 0.1483 (2)    | 0.20361 (9)   | 0.0529 (7)                |
| C1  | 0.3143 (2)   | 0.0940 (3)    | 0.17022 (10)  | 0.0389 (7)                |
| C2  | 0.3576 (2)   | 0.1747 (2)    | 0.12708 (11)  | 0.0401 (8)                |
| C3  | 0.3324 (3)   | 0.3224 (3)    | 0.12430 (15)  | 0.0591 (10)               |
| C4  | 0.4185 (2)   | 0.1119 (3)    | 0.09665 (11)  | 0.0426 (8)                |
| C5  | 0.4713 (2)   | 0.1667 (3)    | 0.05244 (12)  | 0.0482 (9)                |
| C6  | 0.5691 (3)   | 0.1139 (4)    | 0.04886 (14)  | 0.0663 (11)               |
| C7  | 0.6223 (3)   | 0.1596 (5)    | 0.00784 (19)  | 0.0870 (18)               |
| C8  | 0.5750 (3)   | 0.2546 (5)    | -0.03080 (15) | 0.0809 (15)               |
| C9  | 0.4775 (3)   | 0.3064 (4)    | -0.02935 (13) | 0.0663 (11)               |
| C10 | 0.4254 (3)   | 0.2612 (3)    | 0.01229 (12)  | 0.0534 (10)               |
| C11 | 0.42742 (14) | 0.40923 (17)  | -0.07152 (7)  | 0.0932 (18)               |
| C12 | 0.35163 (14) | -0.33276 (17) | 0.19080 (7)   | 0.0624 (11)               |
| C13 | 0.38060 (14) | -0.08820 (17) | 0.30121 (7)   | 0.0547 (10)               |
| C14 | 0.12000 (14) | -0.14855 (17) | 0.20410 (7)   | 0.0586 (10)               |
| H3A | 0.33496      | 0.35644       | 0.16190       | 0.0885*                   |
| H3B | 0.26305      | 0.33584       | 0.10207       | 0.0885*                   |
| НЗС | 0.38277      | 0.36974       | 0.10716       | 0.0885*                   |
| H4  | 0.42933      | 0.02018       | 0.10434       | 0.0511*                   |
| Н6  | 0.59915      | 0.04728       | 0.07422       | 0.0792*                   |
| H7  | 0.68900      | 0.12660       | 0.00642       | 0.1042*                   |
|     |              |               |               |                           |

# supplementary materials

| H8   | 0.61025 | 0.28430  | -0.05866 | 0.0972* |
|------|---------|----------|----------|---------|
| H10  | 0.35872 | 0.29454  | 0.01336  | 0.0640* |
| H11A | 0.37070 | 0.45259  | -0.05805 | 0.1396* |
| H11B | 0.40055 | 0.36550  | -0.10702 | 0.1396* |
| H11C | 0.47878 | 0.47577  | -0.07662 | 0.1396* |
| H12A | 0.30201 | -0.40592 | 0.18350  | 0.0935* |
| H12B | 0.41411 | -0.36295 | 0.21610  | 0.0935* |
| H12C | 0.36936 | -0.30341 | 0.15582  | 0.0935* |
| H13A | 0.34336 | -0.01717 | 0.31612  | 0.0820* |
| H13B | 0.44368 | -0.05221 | 0.29160  | 0.0820* |
| H13C | 0.39864 | -0.15800 | 0.32919  | 0.0820* |
| H14A | 0.09961 | -0.06049 | 0.21497  | 0.0879* |
| H14B | 0.08599 | -0.21672 | 0.22256  | 0.0879* |
| H14C | 0.09943 | -0.15869 | 0.16378  | 0.0879* |
|      |         |          |          |         |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| Sn1 | 0.0438 (1)  | 0.0315 (1)  | 0.0422 (1)  | -0.0025 (1)  | 0.0169(1)   | -0.0026(1)   |
| O1  | 0.0662 (12) | 0.0339 (9)  | 0.0574 (11) | -0.0025 (9)  | 0.0322 (10) | 0.0049 (8)   |
| O2  | 0.0681 (13) | 0.0464 (11) | 0.0518 (11) | 0.0016 (9)   | 0.0307 (10) | -0.0030 (9)  |
| C1  | 0.0445 (14) | 0.0348 (12) | 0.0393 (12) | -0.0037 (11) | 0.0131 (11) | -0.0012 (10) |
| C2  | 0.0499 (15) | 0.0326 (12) | 0.0405 (13) | -0.0067 (11) | 0.0152 (11) | 0.0005 (10)  |
| C3  | 0.086 (2)   | 0.0339 (14) | 0.0670 (19) | -0.0010 (14) | 0.0383 (18) | 0.0022 (13)  |
| C4  | 0.0512 (15) | 0.0386 (13) | 0.0409 (13) | -0.0029 (12) | 0.0162 (11) | 0.0015 (11)  |
| C5  | 0.0548 (16) | 0.0507 (16) | 0.0432 (14) | -0.0101 (13) | 0.0196 (12) | -0.0023 (12) |
| C6  | 0.063 (2)   | 0.082 (2)   | 0.0602 (19) | 0.0021 (18)  | 0.0278 (16) | 0.0043 (18)  |
| C7  | 0.068 (2)   | 0.126 (4)   | 0.078 (3)   | -0.014 (2)   | 0.041 (2)   | -0.008 (3)   |
| C8  | 0.083 (3)   | 0.115 (3)   | 0.0525 (19) | -0.036 (2)   | 0.0324 (19) | 0.002 (2)    |
| C9  | 0.081 (2)   | 0.075 (2)   | 0.0420 (16) | -0.0339 (19) | 0.0099 (15) | 0.0009 (15)  |
| C10 | 0.0604 (18) | 0.0567 (18) | 0.0434 (14) | -0.0169 (14) | 0.0111 (13) | 0.0004 (13)  |
| C11 | 0.121 (4)   | 0.100 (3)   | 0.053 (2)   | -0.040 (3)   | 0.003 (2)   | 0.023 (2)    |
| C12 | 0.085 (2)   | 0.0397 (15) | 0.075 (2)   | 0.0003 (15)  | 0.0463 (19) | -0.0039 (14) |
| C13 | 0.0519 (16) | 0.0603 (18) | 0.0517 (16) | -0.0072 (14) | 0.0099 (13) | -0.0042 (14) |
| C14 | 0.0489 (16) | 0.0635 (19) | 0.0629 (18) | -0.0053 (14) | 0.0095 (14) | 0.0069 (15)  |

Geometric parameters (Å, °)

| Sn1—O1              | 2.1144 (19) | С3—Н3В   | 0.9600 |
|---------------------|-------------|----------|--------|
| Sn1—C12             | 2.1126 (17) | С3—НЗС   | 0.9600 |
| Sn1—C13             | 2.1072 (17) | C4—H4    | 0.9300 |
| Sn1—C14             | 2.1037 (18) | С6—Н6    | 0.9300 |
| Sn1—O2 <sup>i</sup> | 2.607 (2)   | С7—Н7    | 0.9300 |
| 01—C1               | 1.287 (3)   | С8—Н8    | 0.9300 |
| O2—C1               | 1.223 (3)   | C10—H10  | 0.9300 |
| C1—C2               | 1.502 (4)   | C11—H11A | 0.9600 |
| C2—C3               | 1.493 (4)   | C11—H11B | 0.9600 |
| C2—C4               | 1.330 (4)   | C11—H11C | 0.9600 |

| C4—C5                                    | 1.476 (4)   | C12—H12A      | 0.9600     |
|------------------------------------------|-------------|---------------|------------|
| C5—C6                                    | 1.388 (5)   | C12—H12B      | 0.9600     |
| C5—C10                                   | 1.391 (4)   | C12—H12C      | 0.9600     |
| C6—C7                                    | 1.386 (6)   | C13—H13A      | 0.9600     |
| С7—С8                                    | 1.378 (6)   | C13—H13B      | 0.9600     |
| C8—C9                                    | 1.369 (6)   | C13—H13C      | 0.9600     |
| C9—C10                                   | 1.387 (5)   | C14—H14A      | 0.9600     |
| C9—C11                                   | 1.492 (4)   | C14—H14B      | 0.9600     |
| С3—НЗА                                   | 0.9600      | C14—H14C      | 0.9600     |
| O1—Sn1—C12                               | 90.17 (7)   | С5—С4—Н4      | 115.00     |
| O1—Sn1—C13                               | 97.09 (7)   | С5—С6—Н6      | 120.00     |
| O1—Sn1—C14                               | 98.56 (7)   | С7—С6—Н6      | 120.00     |
| $O1$ — $Sn1$ — $O2^i$                    | 175.64 (7)  | С6—С7—Н7      | 120.00     |
| C12—Sn1—C13                              | 114.87 (7)  | С8—С7—Н7      | 120.00     |
| C12—Sn1—C14                              | 116.04 (7)  | С7—С8—Н8      | 119.00     |
| C13—Sn1—C14                              | 126.36 (7)  | С9—С8—Н8      | 119.00     |
| Sn1—O1—C1                                | 123.13 (17) | С5—С10—Н10    | 119.00     |
| $Sn1^{ii}$ —O2—C1                        | 159.7 (2)   | С9—С10—Н10    | 119.00     |
| 01—C1—O2                                 | 122.9 (2)   | С9—С11—Н11А   | 109.00     |
| 01-C1-C2                                 | 115.5 (2)   | C9—C11—H11B   | 109.00     |
| O2—C1—C2                                 | 121.5 (3)   | С9—С11—Н11С   | 109.00     |
| C1—C2—C3                                 | 116.2 (2)   | H11A—C11—H11B | 109.00     |
| C1—C2—C4                                 | 118.4 (2)   | H11A—C11—H11C | 109.00     |
| C3—C2—C4                                 | 125.4 (3)   | H11B—C11—H11C | 109.00     |
| C2—C4—C5                                 | 129.4 (3)   | Sn1—C12—H12A  | 109.00     |
| C4—C5—C6                                 | 117.7 (3)   | Sn1—C12—H12B  | 109.00     |
| C4—C5—C10                                | 123.5 (3)   | Sn1—C12—H12C  | 109.00     |
| C6—C5—C10                                | 118.7 (3)   | H12A—C12—H12B | 109.00     |
| C5—C6—C7                                 | 120.6 (3)   | H12A—C12—H12C | 109.00     |
| C6—C7—C8                                 | 119.1 (4)   | H12B—C12—H12C | 109.00     |
| С7—С8—С9                                 | 121.8 (4)   | Sn1—C13—H13A  | 109.00     |
| C8—C9—C10                                | 118.7 (3)   | Sn1—C13—H13B  | 109.00     |
| C8—C9—C11                                | 121.2 (3)   | Sn1—C13—H13C  | 109.00     |
| C10—C9—C11                               | 120.2 (3)   | H13A—C13—H13B | 109.00     |
| C5—C10—C9                                | 121.1 (3)   | H13A—C13—H13C | 109.00     |
| С2—С3—НЗА                                | 109.00      | H13B—C13—H13C | 109.00     |
| С2—С3—Н3В                                | 109.00      | Sn1—C14—H14A  | 109.00     |
| С2—С3—Н3С                                | 110.00      | Sn1—C14—H14B  | 109.00     |
| НЗА—СЗ—НЗВ                               | 109.00      | Sn1—C14—H14C  | 109.00     |
| НЗА—СЗ—НЗС                               | 110.00      | H14A—C14—H14B | 109.00     |
| НЗВ—СЗ—НЗС                               | 109.00      | H14A—C14—H14C | 109.00     |
| C2—C4—H4                                 | 115.00      | H14B—C14—H14C | 109.00     |
| C12—Sn1—O1—C1                            | -176.6 (2)  | C1—C2—C4—C5   | -179.4 (3) |
| C13—Sn1—O1—C1                            | -61.5 (2)   | C3—C2—C4—C5   | -2.8 (5)   |
| C14—Sn1—O1—C1                            | 67.0 (2)    | C2—C4—C5—C6   | 145.1 (3)  |
| $C12$ — $Sn1$ — $O2^{i}$ — $C1^{i}$      | -157.4 (5)  | C2-C4-C5-C10  | -39.2 (5)  |
| C13—Sn1—O2 <sup>i</sup> —C1 <sup>i</sup> | 87.2 (5)    | C4—C5—C6—C7   | 179.2 (3)  |

# supplementary materials

| C14—Sn1—O2 <sup>i</sup> —C1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -40.4 (5)                               | C10—C5—C6—C7  | 3.3 (5)    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|------------|
| Sn1—O1—C1—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.3 (4)                                | C4—C5—C10—C9  | -178.1 (3) |
| Sn1—O1—C1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 176.30 (16)                             | C6—C5—C10—C9  | -2.5 (5)   |
| Sn1 <sup>ii</sup> —O2—C1—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 146.2 (4)                               | C5—C6—C7—C8   | -2.5 (6)   |
| Sn1 <sup>ii</sup> —O2—C1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -34.4 (7)                               | C6—C7—C8—C9   | 0.9 (7)    |
| O1—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 174.6 (3)                               | C7—C8—C9—C10  | -0.1 (6)   |
| O1—C1—C2—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -8.5 (4)                                | C7—C8—C9—C11  | 180.0 (4)  |
| O2—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.8 (4)                                | C8—C9—C10—C5  | 0.9 (5)    |
| O2—C1—C2—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 172.1 (3)                               | C11—C9—C10—C5 | -179.2 (3) |
| Symmetry codes: (i) $-x+1/2$ , $y-1/2$ , $-z+1/2$ , $y-1/2$ , $-z+1/2$ | 1/2; (ii) $-x+1/2$ , $y+1/2$ , $-z+1/2$ | -1/2.         |            |

## Hydrogen-bond geometry (Å, °)

| D—H··· $A$ | <i>D</i> —Н | H···A  | $D \cdots A$ | D—H··· $A$ |
|------------|-------------|--------|--------------|------------|
| C4—H4…O1   | 0.9300      | 2.2800 | 2.695 (3)    | 107.00     |



Fig. 1

Fig. 2

